And again... f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are mapped onto the same element of the image. g(Linda) = Moscow g(Max) = Boston g(Kathy) = Hong Kong g(Peter) = New York Is g one-to-one? Yes, each element is

assigned a unique element of the image.

How can we prove that a function f is one-to-one? Whenever you want to prove something, first take a look at the relevant definition(s): $\forall x, y \in A$ (f(x) = f(y) $\rightarrow x = y$)

Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ $f(x) = x^2$

Disproof by counterexample: f(3) = f(-3), but $3 \neq -3$, so f is not one-to-one.

... and yet another example:

f:R→R

f(x) = 3x

One-to-one: $\forall x, y \in A$ (f(x) = f(y) $\rightarrow x = y$) To show: f(x) \neq f(y) whenever $x \neq y$ (indirect proof) $x \neq y$ $\Leftrightarrow 3x \neq 3y$

 \Leftrightarrow f(x) \neq f(y), so if x \neq y, then f(x) \neq f(y), that is, f is one-to-one.

A function $f:A \rightarrow B$ with $A,B \subseteq R$ is called strictly increasing, if $\forall x,y \in A \ (x < y \rightarrow f(x) < f(y)),$ and strictly decreasing, if $\forall x,y \in A \ (x < y \rightarrow f(x) > f(y)).$

Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one.

A function $f:A \rightarrow B$ is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

In other words, f is onto if and only if its range is its entire codomain.

A function f: $A \rightarrow B$ is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto.

Obviously, if f is a bijection and A and B are finite sets, then |A| = |B|.

Examples:

In the following examples, we use the arrow representation to illustrate functions $f:A \rightarrow B$.

In each example, the complete sets A and B are shown.

Is f injective? No! f is not even a function!

Inversion

An interesting property of bijections is that they have an inverse function.

The inverse function of the bijection $f:A \rightarrow B$ is the function $f^{-1}:B \rightarrow A$ with $f^{-1}(b) = a$ whenever f(a) = b.

Inversion

Example:

f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Lübeck f(Helena) = New York Clearly, f is bijective.

The inverse function f⁻¹ is given by: f⁻¹(Moscow) = Linda f⁻¹(Boston) = Max f⁻¹(Hong Kong) = Kathy f⁻¹(Lübeck) = Peter f⁻¹(New York) = Helena

Inversion is only possible for bijections (= invertible functions)

Inversion

Composition

The composition of two functions $g:A \rightarrow B$ and $f:B \rightarrow C$, denoted by $f^{\circ}g$, is defined by

 $(f^{\circ}g)(a) = f(g(a))$

This means that

- first, function g is applied to element a∈A, mapping it onto an element of B,
- then, function f is applied to this element of B, mapping it onto an element of C.
- Therefore, the composite function maps from A to C.

Example:

f(x) = 7x - 4, g(x) = 3x, $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ $(f^{\circ}g)(5) = f(g(5)) = f(15) = 105 - 4 = 101$ $(f^{\circ}g)(x) = f(g(x)) = f(3x) = 21x - 4$